

$$
\begin{aligned}
& \text { NMOS }, \frac{V_{t, n}=0.7 \mathrm{~V}}{} \cdot \mu_{n} C_{0 x}=k_{n}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2} \\
& W / L=32 \mu \mathrm{~m} / 1 \mu \mathrm{~m} \\
& \Rightarrow k_{n}=k_{n}^{\prime}\left(\frac{\mathrm{W}}{L}\right)=3.2 \mathrm{~mA} / \mathrm{V}^{2}
\end{aligned}
$$

Assume M_{1} is in saturation

$$
{\overline{I_{D}}}=\frac{1}{2} k_{n} V_{O V}^{2}
$$

Design: \rightarrow set $I_{D}, V_{D S}$ (DC)
\bar{C}_{D} Triode: Sat

\rightarrow Amplifier gain

Peak-to-peak
Goal: $I_{D}=0.4 \mathrm{~mA}, V_{D}=0.5 \mathrm{~V}$

$$
\begin{aligned}
& I_{D}=\frac{1}{2} k_{n} V_{O V}^{2}=0.4 \mathrm{~mA}=\left(1.6 \mathrm{~mA} / \mathrm{V}^{2}\right) \cdot V_{O V}^{2} \\
& V_{O V}^{2}=\frac{1}{4} \Rightarrow V_{0 V}=\frac{1}{2}=0.5 \mathrm{~V}=V_{G S}-V_{t, n} \\
& \Rightarrow V_{G S}=0.5+0.7=1.2 \mathrm{~V}=V_{G}-V_{S} \\
& \Rightarrow V_{S}=-1.2 \mathrm{~V} \\
& R_{D}=\frac{V_{D D}-V_{D}}{I_{D}}=\frac{(2.5-0.5) \mathrm{V}}{0.4 \mathrm{~mA}}=5 \mathrm{k} \Omega \\
& R_{S}=\frac{V_{S}-V_{S S}}{I_{D}}=\frac{(-1.2-(-2.5)) \mathrm{V}}{0.4 \mathrm{~mA}}=\frac{1.3}{0.4}=3.25 \mathrm{k} \Omega \\
& V_{D S}=V_{D}-V_{S}=0.5-(-1.2)=1.7 \mathrm{~V}>V_{O V}=0.5 \mathrm{~V}
\end{aligned}
$$

Assumption is valid $\#$

Example Circuit (2)

$+10 \mathrm{~V}$

(b)

The resistor divider is a common bias circuit.
To solve the DC bias condition, it means to solve $I_{D}, V_{D S}, V_{G S}$
The NMOS has $V_{t n}=1 V, k_{n}=\mu_{n} C_{o x} \frac{W}{L}=1 \mathrm{~mA} / V^{2}$
First, solve $V_{G}=V_{D D} \frac{R_{G 2}}{R_{G 1}+R_{G 2}}=10 \frac{5}{5+5}=5 \mathrm{~V}$
$V_{G S}=5-I_{D} R_{S}=5-6 I_{D} \quad$ (with I_{D} in mA)
Next, assume the transistor is in saturation:
$I_{D}=\frac{1}{2} k_{n} v_{O V}^{2}=0.5\left(V_{G S}-V_{t n}\right)^{2}=0.5\left(5-6 I_{D}-1\right)^{2}$
$18 I_{D}^{2}-25 I_{D}+8=0 \quad-->I_{D}=0.89 \mathrm{~mA}$ or 0.5 mA
If $I_{D}=0.89 \mathrm{~mA}, V_{G S}=-0.34 \mathrm{~V}$, NMOS will be cut-off
--> not a physical solution.
If $I_{D}=0.5 \mathrm{~mA}, V_{G S}=2 V, V_{O V}=2-1=1 \mathrm{~V}$
$V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)=10-6=4 V>V_{O V}$
Saturation assumption verified !

As a design problem

$$
\begin{aligned}
& V_{O V}=V_{G S}-V_{t, n} \\
& V_{G S}=V_{O U}+V_{t, n}
\end{aligned}
$$

NOS. $V_{t_{1}}=1 \mathrm{~V}, \underline{k_{n}}=1 \mathrm{~mA} / V^{2}$
Design goal $I_{D}=0.5 \mathrm{~mA}$
Assume M_{1} is Saturation

$$
\begin{gathered}
I_{D}=\frac{1}{2} \frac{k_{n} v_{0 V}^{2}}{T}=0,5 \mathrm{~mA} \\
V_{0 V}^{2}=1 \Rightarrow V_{0 V}=\underline{1 \mathrm{~V}} \\
V_{G S}=V_{0 V}+V_{t, n}=1+1=2 \mathrm{~V}
\end{gathered}
$$

Design rule of thumb: $\approx 1 / 3$ voltage drop to each element

$$
V_{0 S}=3 \mathrm{~V} \rightarrow>V_{0 \mathrm{~V}}=1 \mathrm{~V}
$$

verify M_{1} is indeed in Saturation

$$
\begin{aligned}
& R_{D}=\frac{4 \mathrm{~V}}{0.5 \mathrm{~mA}}=8 \mathrm{k} \Omega \\
& R_{S}=\frac{3 \mathrm{~V}}{0.5 \mathrm{~mA}}=6 \mathrm{k} \Omega \\
& V_{G}=3+2=5 \mathrm{~V} \\
& R_{G 1}=R_{G 2}, \quad V_{G}=\frac{R_{G 2} V_{D D}}{R_{G_{1}}+R_{G 2}}=5 \mathrm{~V} \quad \mathrm{~V}
\end{aligned}
$$

What do we choose $R_{G_{1}}=R_{G_{2}}=$?

- Choose large R_{G}. to minimize power consumption (0 eg. $R_{G_{1}}=R_{G_{2}}=1 \mathrm{M} \Omega$ or $10 \mathrm{M} \Omega$
choose

RC time
\Rightarrow Bandwidth

n-sub

PMOS I-V Curves

$V_{D S}$

$$
\frac{V_{G S}=-1 V}{V_{G S}=-2 V}
$$

$$
V_{G S}=-3 V
$$

$$
V_{G S}=-4 V
$$

Right Side Up!

PMOS I-V Equations

Saturation Region:
Use same equation as NMOS but add absolute sign on all voltages since most voltages are negative:
$V_{t p}<0, v_{D S}<0, \mathrm{v}_{G S}<0$
So either use $v_{S D}$ or $\left|v_{D S}\right|$
$\overline{v_{O V}}=\left|v_{S G}\right|-\left|V_{t p}\right|$

$$
\begin{aligned}
& i_{D}=\frac{1}{2} \mu_{p} C_{o x}\left(\frac{W}{L}\right)\left(\left|v_{G S}\right|-\left|V_{t p}\right|\right)^{2} \\
& =\underbrace{\frac{1}{2} \underbrace{\mu_{p x} C_{o x}\left(\frac{W}{L}\right)}_{p} v_{o V}^{2}}_{k_{p}}
\end{aligned}
$$

Example Circuit (3)

Design Problem:

Design the circuit such that $I_{D}=0.5 \mathrm{~mA}$ and $V_{D}=3 \mathrm{~V}$.
PMOS has $V_{t p}=-1 V, \mu_{p} C_{o x}(W / L)=1 m A / V^{2}$.
Also find the maximum R_{D} for PMOS to remain in Saturation

Solution:
$I_{D}=\frac{1}{2} k_{p} V_{O V}^{2}=0.5 m A \rightarrow\left|V_{O V}\right|=1 V$
$\left|V_{G S}\right|=\left|V_{t p}\right|+\left|V_{O V}\right|=1+1=2 V$
$V_{S}=5 \mathrm{~V} \quad-->V_{G}=3 \mathrm{~V}$
We can choose $\mathrm{R}_{G 1}=2 M \Omega$ and $\mathrm{R}_{G 2}=3 M \Omega$
Saturation: $V_{D} \leq 5-\left|V_{O V}\right|=4 V$
$R_{D, \text { max }}=\frac{V_{D, \text { max }}}{I_{D}}=\frac{4}{0.5}=8 \mathrm{k} \Omega$

Design example

Consider channel length modulation
$\frac{1}{2} k_{p} v_{o v}^{2}\left(1+\lambda\left|v_{p s}\right|\right)=0.5 \mathrm{~mA}$
\Rightarrow Solving Bias (DC)
Problem by hand,
Ignore λ

MOS: $V_{t p}=-1 V, k_{p}=1 \mathrm{~mA} / \mathrm{V}^{2}$
Design e goal $I_{D}=0.5 \mathrm{~V}$
M_{1} in saturation

$$
\begin{aligned}
& I_{D}=\frac{1}{2} k_{p} V_{O V}^{2}=0.5 \mathrm{~mA} \\
& \quad \mid m A / V^{2} \\
& \Rightarrow V_{0 .}^{2}=\mid V \Rightarrow \underline{\left|V_{D V}\right|=1} \\
& \left|V_{G S}\right|=\left|V_{O V}\right|+\left|V_{t, p}\right|=1+1=2 \mathrm{~V}
\end{aligned}
$$

$$
\text { Choose } V_{D}=\frac{1}{2} V_{D D}=2.5 \mathrm{~V}
$$

$$
\Rightarrow\left|V_{D S}\right|=\left|V_{D D}-V_{D}\right|=2.5 \mathrm{~V}>\left|V_{D V}\right|
$$

M_{1} indeed in Saturation
$R_{G_{1}}$, RaGI,
Choose $R_{G_{1}}=2 \mathrm{M} \Omega, \quad R_{G_{2}}=3 \mathrm{M} \Omega$

$$
V_{G}=V_{D D} \cdot \frac{R_{G 2}}{R_{G_{1}}+R_{G_{2}}}=3 \mathrm{~V}
$$

Finite Output Resistance due to Channel Length Modulation

When $v_{D S}=v_{O V}$, the channel pinch of near the Drain. With further increase in $v_{D S}$, the pinch off point moves slowly towards the source, effectively reducing the channel length from L to $L-\Delta L$ (this is called "channel length modulation") :
$i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L-\Delta L}\left(v_{G S}-V_{t n}\right)^{2}$
The continual increase of i_{D} with $v_{D S}$ is modeled by
$i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{t n}\right)^{2}\left(1+\lambda v_{D S}\right)$

$I_{D} \quad$ channel
channel pinch oft

Real device \rightarrow Not indep of $V_{D S}$

Channel length modulation

$$
V_{D S}=V_{O V}=V_{G S}-V_{t, n}
$$

Increase VDS further

$$
\begin{aligned}
& \text { Leff }=L-\Delta L \quad\left(\Delta L \propto V_{D S}\right. \\
& I_{D}=\frac{1}{2} \mu_{n} \operatorname{Cox}\left(\frac{W}{L-\Delta L}\right) \cdot V_{0 V}^{2}=\frac{1}{2} \ln C_{0 x}\left(\frac{W}{L}\right) V_{00}^{2} \cdot\left(\frac{1}{1-\frac{\Delta L}{L}}\right) \\
& \left.\frac{\Delta L}{L} \ll 1 \quad\left(1-\frac{\Delta L}{L}\right)^{-1} \approx 1+\frac{\Delta L}{L}\right)^{\lambda} \quad \lambda V_{D S} \quad \frac{1}{1-\epsilon} \approx 1+\epsilon
\end{aligned}
$$

Consider channel length modulation

$$
I_{D}=\frac{1}{2} \mu_{n} C_{O x}\left(\frac{W}{L}\right) \cdot v_{O V}^{2}(\underbrace{\left.1+\lambda v_{D S}\right)}
$$

Output Resistance of MOSFET

$$
\begin{aligned}
& \underbrace{}_{D}=\frac{\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{t n}\right)^{2}\left(1+\lambda v_{D S}\right)}{r_{o}=\left(\frac{\partial v_{D S}}{\partial i_{D}}\right)_{v_{G S}=V_{G S}}=\left(\frac{\partial i_{D}}{\partial v_{D S}}\right)_{v_{G S}=V_{G S}}^{-1}=\frac{1}{\lambda\left(\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{t n}\right)^{2}\right)} \approx \frac{1}{\lambda I_{D}}} \text { = }
\end{aligned}
$$

$$
r_{0}=r_{d s}
$$

$r_{o}=\frac{1}{\lambda I_{D}}$ where $I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{t n}\right)^{2}$ is the DC bias current at Drain.

$$
r_{0}=\frac{\Delta v_{D S}}{\Delta \tau_{D S}}=\frac{1}{\frac{\partial \tau_{D}}{\partial v_{D S}}}
$$

To find V_{A}

$$
\begin{aligned}
I_{D}=0 & =\frac{1}{2} \mu_{n} \operatorname{Cox}\left(\frac{w}{L}\right) V_{0} V^{2}\left[1+\lambda\left(-V_{A}\right)\right] \\
\Rightarrow & 1-\lambda V_{A}=0 \Rightarrow V_{A}=\frac{1}{\lambda} \quad \text { (Early "Voltage) } \\
& \lambda:\left[V^{-1}\right] \quad \uparrow \quad \text { Name devise from }
\end{aligned}
$$ BJT terminology

